Model 12LC-30m 2-el OVF-yagi for 30 m at OH1AJ

Version 1.2

2-el phased array for 30 m at OH1AJ

- Antenna up 28 m
- Full size elements, abt 15 m long
- Spacing 4.2 m
- Opposite-voltage feed system
- both elements are tuned to 10125 kHz
- $1 / 2$ wavelength cables from both element to the phasing box
- opposite cable polarities in front and rear elements
- current balun on both cables
- equal current amplitudes in both elements
- Instant 180 degree direction switching

Tapering plan for one half element

- $\mathrm{Dia} / \mathrm{mm}$	Length/mm	wall/mm	Cumulative/mm
- 40	1500 (from ele center)	2	1500
- 35	1000	2	2500
- 30	1000	1.5	3500
- 25	1000	1.5	4500
- 19	1000	1.5	5500
- 15	1000	1	6500
- 12	960	1	7460

30 m OVF-array at OH1AJ
Antenna height 28 m
Elements tuned to 10125 kHz
Electrical length of feed cables is $14.80 \mathrm{~m} @ \mathrm{v}=1.00$
Element spacing 4.2m
Center frequency 10125 kHz

17.42019

OH1TV

Phasing box for 2 el 30 m array at OH 1 AJ

Tuning targets, when X grounded:
Front element: $327 \mathrm{pF} @ 10.125 \mathrm{MHz}=-\mathrm{j} 48.07$ ohm
Rear element: $1.00 \mathrm{uH} @ 10.125 \mathrm{MHz}=+\mathrm{j} 63.62$ ohm
Front element

Box lay-out

- accurate capacitance values achieved by using two parallel capacitors and their wire lengths adjusted.
- The box is Hammond $120 \times 180 \times 60 \mathrm{~mm}$
- All components are mounted on the cover plate
- 3pcs UHF female connectors, flange mount
- Relay Omron mjn3cf-dc12 250v 10A ac
- The capacitor board is insulated with plastic stand-offs

The phasing box upside-down

10125 kHz , height 28 m , vertical pattern

Total Field

EZNEC Pro/4

Elevation Plot
Azimuth Angle 0.0 deg.
Outer Ring $\quad 11.61 \mathrm{dBi}$
10.125 MHz

Cursor Elev 15.0 deg.
Gain $\quad 11.61 \mathrm{dBi}$ 0.0 dBmax

Slice Max Gain 11.61 dBi @ Elev Angle = 15.0 deg
Beamwidth $\quad 15.4$ deg.; -3 dB @ 7.1, 22.5 deg .
Sidelobe Gain $\quad 9.22 \mathrm{dBi} @$ Elev Angle $=49.0 \mathrm{deg}$.
Front/Sidelobe 2.39 dB

10125 kHz , height 28 m , horizontal at elevation 15 deg

EZNEC Pro/4
10.125 MHz

Azimuth Plot
Elevation Angle 15.0 deg.
Outer Ring $\quad 11.6 \mathrm{dBi}$
Slice Max Gain $11.6 \mathrm{dBi} @$ Az Angle $=0.0$ deg .
Front/Back $\quad 21.45 \mathrm{~dB}$
Beamwidth $\quad 69.4$ deg.; -3dB @ 325.3, 34.7 deg.
Sidelobe Gain $\quad-8.84 \mathrm{dBi} @$ Az Angle $=115.0 \mathrm{deg}$.
Front/Sidelobe 20.44 dB

10100 kHz , height 28 m , horizontal at elevation 15 deg

EZNEC Pro/4
10.1 MHz

Azimuth Plot
Elevation Angle 15.0 deg.
Outer Ring $\quad 11.58 \mathrm{dBi}$

CursorAz 0.0 deg.
Gain $\quad 11.58 \mathrm{dBi}$
0.0 dBmax

Slice Max Gain $11.58 \mathrm{dBi} @$ Az Angle $=0.0$ deg.
Front/Back $\quad 21.74 \mathrm{~dB}$
Beamwidth $\quad 69.6 \mathrm{deg} . ;-3 \mathrm{~dB} @ 325.2,34.8 \mathrm{deg}$.
Sidelobe Gain $\quad-8.77 \mathrm{dBi} @$ Az Angle $=115.0 \mathrm{deg}$.
Front/Sidelobe 20.35 dB

10150 kHz , height 28m, horizontal at elevation 15 deg

EZNEC Pro/4
10.15 MHz

Azimuth Plot
Elevation Angle 15.0 deg.
Outer Ring $\quad 11.61 \mathrm{dBi}$

CursorAz 0.0 deg.
Gain $\quad 11.61 \mathrm{dBi}$ 0.0 dBmax

Slice Max Gain $11.61 \mathrm{dBi} @$ Az Angle $=0.0$ deg.
Front/Back $\quad 21.02 \mathrm{~dB}$
Beamwidth $\quad 69.4$ deg.; -3dB @ 325.3, 34.7 deg.
Sidelobe Gain $\quad-8.92 \mathrm{dBi} @$ Az Angle $=115.0 \mathrm{deg}$.
Front/Sidelobe 20.53 dB

SWR

Going up

40m 2-el on top 30m antenna was installed to the point where OH1ND is standing is

